Jurnal Algoritma
Vol 21 No 2 (2024): Jurnal Algoritma

Deteksi Rambu Lalu Lintas Real-Time di Indonesia dengan Penerapan YOLOv11: Solusi Untuk Keamanan Berkendara

Pradana, Afu Ichsan (Unknown)
Harsanto, Harsanto (Unknown)
Wijiyanto, Wijiyanto (Unknown)



Article Info

Publish Date
30 Nov 2024

Abstract

This research aims to formulate and assess a real-time traffic sign detection framework in the context of Indonesia, using YOLOv11. Given the heterogeneous nature of traffic signs and road conditions in Indonesia, there is an urgent need for a robust and precise model to improve driving safety. The findings show that the model successfully achieved a Mean Average Precision (mAP) of 0.99, simultaneously demonstrating high accuracy across a wide range of traffic sign classifications. Evaluation using Confusion Matrix, shed light on the negligible error rate, signaling that the model has sufficient reliability for real-world applications. The potential applications of this technology are crucial in strengthening Indonesia's driving safety and intelligent transportation systems.

Copyrights © 2024






Journal Info

Abbrev

algoritma

Publisher

Subject

Computer Science & IT

Description

Jurnal Algoritma merupakan jurnal yang digunakan untuk mempublikasikan hasil penelitian dalam bidang Teknologi Informasi (TI), Sistem Informasi (SI), dan Rekayasa Perangkat Lunak (RPL), Multimedia (MM), dan Ilmu Komputer (Computer ...