Mobile banking atau M-banking menjadi semakin populer seiring dengan meluasnya penggunaan ponsel pintar. Pertumbuhan ini didorong oleh beberapa faktor, seperti kebijakan pemerintah melalui Gerakan Nasional Non-Tunai (GNTT) dan inovasi dari bank. Latar belakang penelitian ini berangkat dari pentingnya merespons keluhan pengguna terhadap aplikasi M-banking. Ulasan negatif mencerminkan masalah yang dialami pengguna dan bisa memengaruhi kepercayaan terhadap layanan. Sayangnya, platform seperti Google Play Store tidak menyediakan fitur untuk mengidentifikasi tren dari ulasan negatif. Oleh karena itu, penelitian ini menggunakan metode Latent Dirichlet Allocation (LDA) untuk memodelkan tren topik dalam ulasan negatif guna memberikan wawasan bagi penyedia layanan untuk meningkatkan kualitas aplikasi mereka. Penelitian ini dilakukan melalui beberapa tahap, dimulai dengan pengumpulan data ulasan negatif dari tiga aplikasi M-banking populer. Selanjutnya data akan melalui tahap preprocessing, meliputi: tokenizing, stopwords removal, dan stemming. Sentimen dari ulasan dianalisis menggunakan algoritma Support Vector Machine (SVM) dengan akurasi mencapai 93%, untuk memisahkan ulasan positif dan negatif. Selanjutnya, LDA digunakan untuk memodelkan topik pada ulasan negatif, dengan mengidentifikasi sejumlah topik optimal melalui Coherence Score, yang menunjukkan struktur topik yang logis dan terorganisir. Hasil penelitian menunjukkan bahwa pada BRImo, topik yang dominan adalah biaya dan kecepatan layanan aplikasi. Pada BCA mobile, pengguna lebih banyak membahas fitur dan kemudahan penggunaan aplikasi, sedangkan pada Livin’ by Mandiri, topik utama yang dibahas berkaitan dengan fitur transfer dan jam transaksi. Kesimpulan dari penelitian ini adalah bahwa metode LDA berhasil digunakan untuk menemukan tren utama dari ulasan negatif pengguna, yang diharapkan dapat membantu bank dalam meningkatkan kualitas layanan dan keamanan aplikasi mobile banking.
Copyrights © 2024