Kesatria : Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen)
Vol 5, No 4 (2024): Edisi Oktober

Identifikasi Varietas Anggur Secara Otomatis Menggunakan Segmentasi Gambar Berbasis Warna dan Analisis Tekstur: Pendekatan K-Means Clustering

Afriadi, A (Unknown)
Harnaranda, Jefri (Unknown)
Ramadhanu, Agung (Unknown)



Article Info

Publish Date
30 Oct 2024

Abstract

In this study, we propose an automated system for identifying grape varieties (red and green) using color-based image segmentation and texture analysis. The system employs K-Means Clustering for color segmentation in the Lab* color space, followed by Gray-Level Co-occurrence Matrix (GLCM) texture feature extraction to differentiate grape types. The experimental results show that the proposed method achieved an accuracy of over 90% in identifying grape varieties, demonstrating its potential for industrial applications in fruit processing. Our findings indicate that the system is robust under various lighting conditions and can significantly reduce human error in grape sorting processes. Automated Identification of Grape Varieties Using Color-Based Image Segmentation and Texture Analysis: A K-Means Clustering Approach

Copyrights © 2024






Journal Info

Abbrev

kesatria

Publisher

Subject

Computer Science & IT Control & Systems Engineering

Description

KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen) adalah sebuah jurnal peer-review secara online yang diterbitkan bertujuan sebagai sebuah forum penerbitan tingkat nasional di Indonesia bagi para peneliti, profesional, Mahasiswa dan praktisi dari industri dalam bidang Ilmu ...