JTIM : Jurnal Teknologi Informasi dan Multimedia
Vol. 7 No. 1 (2025): February

Comparative Analysis of Stock Price Prediction Using Deep Learning with Data Scaling Method

Switrayana, I Nyoman (Unknown)
Hammad, Rifqi (Unknown)
Irfan, Pahrul (Unknown)
Sujaka, Tomi Tri (Unknown)
Nasri, Muhammad Haris (Unknown)



Article Info

Publish Date
04 Jan 2025

Abstract

The dynamic and unpredictable nature of stock prices makes accurate forecasting an important challenge in financial analysis. This study aims to compare the performance of three deep learning models, namely, Recurrent Neural Network (RNN), Gated Recurrent Unit (GRU), and Long Short-Term Memory (LSTM) in predicting stock prices on historical daily banking data from Yahoo Finance. The main objective is to determine the model that is best able to capture sequential patterns and temporal dependencies in stock price movements. Each model was trained and op-timized through data scaling, namely MinMax Scaler and Standard Scaler, with performance evaluated using Root Mean Square Error (RMSE) as the primary metric. Results show that while the RNN provides a basic approach, the GRU and LSTM models produce higher prediction accuracy, with GRU achieving the lowest RMSE thanks to its better ability to maintain long-term depend-encies. The RMSE achieved by RNN, GRU, and LSTM were 211.47, 158.89, and 197.45, respectively. The lowest error results were achieved when using MinMax Scaler. The use of MinMax Scaler here shows a better performance improvement with an average improvement of 22.57% compared to using Standard Scaler. This comparative analysis contributes to providing empirical insight into the relative effectiveness of the tested architectures. The findings suggest that the combination of GRU and MinMax Scaler can be a more reliable tool for financial forecasting, with the potential to develop more robust stock prediction applications under fluctuating market conditions.

Copyrights © 2025






Journal Info

Abbrev

jtim

Publisher

Subject

Computer Science & IT

Description

Cakupan dan ruang lingkup JTIM terdiri dari Databases System, Data Mining/Web Mining, Datawarehouse, Artificial Integelence, Business Integelence, Cloud & Grid Computing, Decision Support System, Human Computer & Interaction, Mobile Computing & Application, E-System, Machine Learning, Deep Learning, ...