JSAI (Journal Scientific and Applied Informatics)
Vol 8 No 1 (2025): Januari

Eksplorasi Model Prediksi Sentimen Postingan Di Media Sosial

Fitri Purwaningtias (Unknown)



Article Info

Publish Date
01 Jan 2025

Abstract

Sentiment analysis is a text analysis technique that can be used to understand the opinion, feeling, or sentiment of a text. This research aims to explore and compare sentiment prediction models on social media data with three algorithms, namely GaussianNB, Logistic Regression, and Support Vector Machine (SVM). The dataset used is taken from www.kaggle.com, which consists of social media posts from the Twitter, Facebook, and Instagram platforms with positive, negative, and neutral sentiment categories. The analysis process involves text data preprocessing, data labeling, feature extraction with Bag of Words (BoW) and TF-IDF, and handling data imbalance with SMOTE. The results showed that the SVM model with TF-IDF and SMOTE performed best, with 93.25% accuracy on training data and 92.50% on test data. This research contributes to determining the best model for sentiment analysis of social media data and can be a reference in developing better sentiment prediction systems in the future.

Copyrights © 2025






Journal Info

Abbrev

JSAI

Publisher

Subject

Computer Science & IT

Description

Jurnal terbitan dibawah fakultas teknik universitas muhammadiyah bengkulu. Pada jurnal ini akan membahas tema tentag Mobile, Animasi, Computer Vision, dan Networking yang merupakan jurnal berbasis science pada informatika, beserta penelitian yang berkaitan dengan implementasi metode dan atau ...