JSAI (Journal Scientific and Applied Informatics)
Vol 8 No 1 (2025): Januari

Optimasi Strategi Pemasaran E-Commerce Melalui Prediksi Konversi Berbasis Machine Learning

Agustina Heryati (Unknown)
Terttiaavini, Terttiaavini (Unknown)
Septa Cahyani (Unknown)
K.Ghazali (Unknown)
Harsi Romli (Unknown)
Iski Zaliman (Unknown)



Article Info

Publish Date
01 Jan 2025

Abstract

The research identifies the problem of enhancing e-commerce sales conversion through TikTok amidst intense content competition. The objective of the study is to develop a machine learning-based marketing strategy to analyze user behavior and categorize them into Non-Purchasers and Purchasers.The method employed includes clustering using K-Means, K-Medoids, and Fuzzy C-Means algorithms, with K-Means demonstrating the best performance, achieving the highest Silhouette Coefficient (0.1857) and the lowest Davies-Bouldin Index (1.9991). Following clustering, classification is performed using Naïve Bayes, Decision Tree, and Random Forest algorithms. The Random Forest model yields the best results with an accuracy of 0.9945, showcasing its effectiveness in predicting sales conversions.The conclusion of this study indicates that K-Means and Random Forest are the optimal methods for clustering and classification, respectively, in understanding user behavior on TikTok. These findings can assist e-commerce players in tailoring their marketing strategies, improving sales conversion rates, and enhancing advertising efficiency

Copyrights © 2025






Journal Info

Abbrev

JSAI

Publisher

Subject

Computer Science & IT

Description

Jurnal terbitan dibawah fakultas teknik universitas muhammadiyah bengkulu. Pada jurnal ini akan membahas tema tentag Mobile, Animasi, Computer Vision, dan Networking yang merupakan jurnal berbasis science pada informatika, beserta penelitian yang berkaitan dengan implementasi metode dan atau ...