JOURNAL OF APPLIED INFORMATICS AND COMPUTING
Vol. 9 No. 1 (2025): February 2025

Comparing Machine Learning Algorithms to Enhance Volumetric Water Content Prediction in Low-Cost Soil Moisture Sensor

Setiawan, Iman (Unknown)
Musa, Mohammad Dahlan Th. (Unknown)
Afriza, Dini Aprilia (Unknown)
Hafidah, Siti Nur (Unknown)



Article Info

Publish Date
16 Jan 2025

Abstract

Measuring soil moisture is possible either with directly using gravimetric test or indirectly using soil moisture sensor. Direct measurements offer accuracy but are not efficient in field measurements. On the other hand, indirect measurement offers remote measurement that will facilitate the user but lacks in accuracy. This research aims to compare and identify the best machine learning model that can improve indirect measurement (soil moisture sensor prediction) using direct measurement (gravimetric test) as a response variable. This research uses linear regression, K-Nearest Neighbours (KNN) and Decision Tree models. The three models were then compared based on Root Mean Square Error (RMSE). The results suggested that KNN (0.02939128) had the smallest RMSE value followed by decision tree (0.05144186) and linear regression model (0.05172371).

Copyrights © 2025






Journal Info

Abbrev

JAIC

Publisher

Subject

Computer Science & IT

Description

Journal of Applied Informatics and Computing (JAIC) Volume 2, Nomor 1, Juli 2018. Berisi tulisan yang diangkat dari hasil penelitian di bidang Teknologi Informatika dan Komputer Terapan dengan e-ISSN: 2548-9828. Terdapat 3 artikel yang telah ditelaah secara substansial oleh tim editorial dan ...