Journal of Deep Learning, Computer Vision and Digital Image Processing
Volume 2 Issue 2 September 2024

Klasifikasi tingkat aroma daun jeruk purut menggunakan metode jaringan saraf tiruan backpropagation

Muh. Asmar (Unknown)
M. Rizky Kurniawan (Unknown)
Reynaldi Nafzal Ashari (Unknown)
Muh. Akbar (Unknown)
Rezki Nurul Jariah S.Intam (Unknown)



Article Info

Publish Date
28 Sep 2024

Abstract

Penelitian ini bertujuan untuk mengembangkan metode klasifikasi tingkat aroma pada daun jeruk menggunakan citra daun sebagai input. Dataset yang digunakan terdiri dari 300 lembar daun jeruk yang dibagi menjadi tiga kelas aroma: kuat, sedang, dan rendah. Proses klasifikasi melibatkan tahap preprocessing, ekstraksi fitur, pelatihan model menggunakan Jaringan Saraf Tiruan (JST), dan pengujian model. Tahap preprocessing mencakup ekstraksi channel warna dan segmentasi citra. Fitur-fitur warna dan tekstur diekstraksi untuk digunakan dalam pelatihan model JST. Hasil eksperimen menunjukkan bahwa menggunakan fitur warna RGB memberikan akurasi pelatihan sebesar 91,25% dengan waktu komputasi 5,79 detik per citra, dan akurasi pengujian mencapai 100% dengan waktu komputasi 7,76 detik per citra. Hal ini menunjukkan bahwa metode klasifikasi yang dikembangkan mampu dengan baik dalam menentukan tingkat aroma daun jeruk. Namun, dalam penelitian ini kami menyarankan perbaikan pada proses akuisisi citra dan pengembangan metode klasifikasi tambahan untuk meningkatkan keakuratan dalam menentukan tingkat aroma daun jeruk.

Copyrights © 2024






Journal Info

Abbrev

DECODING

Publisher

Subject

Computer Science & IT

Description

The Journal of Deep Learning, Computer Vision and Digital Image Processing (DECODING), covers all topics of artificial intelligence and soft computing and their applications, including but not limited to: • Neural networks • Reasoning and evolution • Intelligent search • Intelligent planning ...