The application of machine learning in healthcare is increasingly critical for improving diagnostic accuracy and timely treatment. This study explores the classification of heart disease using Naïve Bayes and K-Nearest Neighbors (KNN), focusing on evaluating their effectiveness through a comparative analysis. The research addresses the challenge of identifying an optimal method for heart disease classification, emphasizing the need for reliable algorithms. Using a dataset from Kaggle with detailed preprocessing, we implement Naïve Bayes and KNN to assess classification performance. The study introduces a comparative perspective on classification accuracy, precision, recall, and F1-score, revealing the strengths and limitations of each method. The results highlight the superior performance of Naïve Bayes with an accuracy of 88%, offering novel insights for data-driven healthcare decisions.
Copyrights © 2024