IJISTECH
Vol 8, No 3 (2024): The October edition

Customer Loyalty Classification with Comparison of Naive Bayes, C4.5, and KNN Methods

Wati, Embun Fajar (Unknown)
Perangin-Angin, Elvi Sunita (Unknown)
Indriyani, Luthfi (Unknown)



Article Info

Publish Date
30 Oct 2024

Abstract

Customer loyalty is indispensable for the survival of a company. Customer loyalty needs to be maintained in order to return to visit and transact with the Company. Customer data consisting of age, annual income, purchase amount, region, purchase frequency, and loyalty score features can produce new information, namely analyzing customers who have high loyalty. Data processing is carried out using three data mining algorithms, namely Naïve Bayes, C4.5 or Decision Tree, and KNN. The stages carried out in data processing consist of data selection, preprocessing, transformation, and modelling. The customer data used amounted to 238. Modelling is carried out using Rapid Miner Software. Customer loyalty classification can be easily done with the three algorithms, namely Naive Bayes, and C4.5 or Decision Tree, and KNN which is validated by the 10-fold cross-validation method so as to produce the highest percentage of accuracy and the similarity of the accuracy value of the Naive Bayes and C4.5 algorithms, which is 96.67%. In the AUC value, it can be seen that the Naive Bayes algorithm is superior to the C4.5 algorithm or Decision Tree and KNN. The result of the highest AUC value is 0.997, the highest precision percentage is 98.92% achieved by the Naive Bayes algorithm. The result of the highest recall percentage is C4.5 of 100%. The results of the AUC value and accuracy percentage on the three algorithms prove that the performance of the three algorithms is very good.

Copyrights © 2024






Journal Info

Abbrev

ijistech

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management Electrical & Electronics Engineering Engineering Social Sciences

Description

IJISTECH (International Journal of Information System & Technology) has changed the number of publications to six times a year from volume 5, number 1, 2021 (June, August, October, December, February, and April) and has made modifications to administrative data on the URL LIPI Page: ...