Generative Adversarial Networks (GANs) are a major advancement in generative modeling, surpassing traditional machine learning models in tasks such as image generation, super-resolution, and image-to-text translation. A GAN consists of two neural networks: a Generator (G), which creates data from noise or a latent vector, and a Discriminator (D), which determines whether the data is real or generated. These networks train competitively, improving each other iteratively to produce increasingly realistic outputs. However, GANs face challenges like mode collapse, unstable training, and convergence issues, leading to the adoption of strategies such as instance normalization and enhanced loss functions. Future research can focus on improving stability, developing novel loss functions, and applying GANs in unsupervised learning. Performance metrics like Inception Score, Fréchet Inception Distance (FID), and Structural Similarity Index (SSIM) are essential for evaluating and comparing GAN architectures. Additionally, ethical concerns, including the misuse of GANs for deepfakes and synthetic data, underscore the importance of transparency, accountability, and ethical standards in research and deployment. This review provides an accessible introduction to GANs for novice researchers, along with a detailed analysis of their limitations, applications, and future prospects, offering valuable insights and direction for advancing this field.
Copyrights © 2025