Claim Missing Document
Check
Articles

Found 5 Documents
Search

Comparative Analysis of CryptoGAN: Evaluating Quality Metrics and Security in GAN-based Image Encryption Bhat, Ranjith; Nanjundegowda, Raghu
Journal of Robotics and Control (JRC) Vol 5, No 5 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i5.23096

Abstract

Balancing security with image quality is a critical challenge in image encryption, particularly for applications like medical imaging that require high visual fidelity. Traditional encryption methods often fail to preserve image integrity and are vulnerable to advanced attacks. This paper introduces CryptoGAN, a novel GAN-based model designed for image encryption. CryptoGAN employs an architecture to effectively encrypt a dataset of 2000 butterfly images with a resolution of 256x256 pixels, integrating Generative Adversarial Networks (GANs) with symmetric key encryption. Using a U-Net Generator and a PatchGAN Discriminator, CryptoGAN optimizes for key metrics including Structural Similarity Index (SSIM), entropy, and correlation measures. CryptoGAN's performance is comprehensively compared against state-of-the-art models such as Cycle GAN-based Image Steganography, EncryptGAN, and DeepEDN. Our evaluation, based on metrics like SSIM, entropy, and PSNR, demonstrates CryptoGAN's superior ability to enhance encryption robustness while maintaining high image quality. Extensive experimental results confirm that CryptoGAN effectively balances security and visual fidelity, making it a promising solution for secure image transmission and storage. This study is supported by a literature survey and detailed analysis of the model architecture, underscoring CryptoGAN's significant contributions to the field of image encryption.
CryptoGAN: a new frontier in generative adversarial network-driven image encryption Bhat, Ranjith; Nanjundegowda, Raghu
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 4: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i4.pp4813-4821

Abstract

There is a growing need for an image encryption scheme, for huge amount of social media data or even the medical data to secure the privacy of the patients or the user. This study introduces a ground-breaking deep learning architecture named crypto generative adversarial networks (CryptoGAN), a novel architecture for generating cipher images. This architecture has the ability to generate both encrypted and decrypted images. The CryptoGAN system consists of an initial encryption network, a generative network that verifies the output against the desired domain, and a subsequent decryption phase. The generative adversarial networks (GAN) are utilised as the learning network to generate cipher images. This is achieved by training the neural network using images encrypted from a conventional image encryption scheme such as advanced encryption standards (AES), and learning from the resulting losses. This enhances security measures when dealing with a large dataset of photos. The assessment of the performance metrics of the encrypted image, including entropy, histogram, correlation plot, and vulnerability to assaults, demonstrates that the suggested generative network may get a higher level of security.
Seeding precision: a mask region based convolutional neural networks classification approach for the classification of paddy seeds Nambiar, Rajashree; Bhat, Ranjith; Kumara, Varuna
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 4: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i4.pp4138-4146

Abstract

The generation of sufficient training data that is accurately labelled for a deep neural network involves a significant amount of effort and frequently constitutes a bottleneck in the implementation process. For the purpose of this research, we are training a neural network model to perform instance segmentation and classification of crop seeds for various rice cultivars. Synthetically constructed dataset is used here. The concept of domain randomization, which offers a productive alternative to the laborious process of data annotation, serves as the basis for our methodology. We make use of the domain randomization technique in order to produce synthetic data, and the mask region-based convolutional neural network (Mask R-CNN) architecture is utilized in order to train our neural network models. A cultivar name is used to designate the seeds, and they are differentiated from one another using colors that are comparable to those used in the actual dataset of paddy cultivars. Our mission focuses on the identification and categorization of rice paddy varieties within automatically generated photographs. Farmers are able to accurately sort crop seeds from a variety of rice cultivars with the use of this approach, which is particularly useful for phenotyping and optimizing yields in laboratory settings.
Comparative Analysis of CryptoGAN: Evaluating Quality Metrics and Security in GAN-based Image Encryption Bhat, Ranjith; Nanjundegowda, Raghu
Journal of Robotics and Control (JRC) Vol. 5 No. 5 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i5.23096

Abstract

Balancing security with image quality is a critical challenge in image encryption, particularly for applications like medical imaging that require high visual fidelity. Traditional encryption methods often fail to preserve image integrity and are vulnerable to advanced attacks. This paper introduces CryptoGAN, a novel GAN-based model designed for image encryption. CryptoGAN employs an architecture to effectively encrypt a dataset of 2000 butterfly images with a resolution of 256x256 pixels, integrating Generative Adversarial Networks (GANs) with symmetric key encryption. Using a U-Net Generator and a PatchGAN Discriminator, CryptoGAN optimizes for key metrics including Structural Similarity Index (SSIM), entropy, and correlation measures. CryptoGAN's performance is comprehensively compared against state-of-the-art models such as Cycle GAN-based Image Steganography, EncryptGAN, and DeepEDN. Our evaluation, based on metrics like SSIM, entropy, and PSNR, demonstrates CryptoGAN's superior ability to enhance encryption robustness while maintaining high image quality. Extensive experimental results confirm that CryptoGAN effectively balances security and visual fidelity, making it a promising solution for secure image transmission and storage. This study is supported by a literature survey and detailed analysis of the model architecture, underscoring CryptoGAN's significant contributions to the field of image encryption.
A Review on Comparative Analysis of Generative Adversarial Networks’ Architectures and Applications Bhat, Ranjith; Nanjundegowda, Raghu
Journal of Robotics and Control (JRC) Vol. 6 No. 1 (2025)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v6i1.24160

Abstract

Generative Adversarial Networks (GANs) are a major advancement in generative modeling, surpassing traditional machine learning models in tasks such as image generation, super-resolution, and image-to-text translation. A GAN consists of two neural networks: a Generator (G), which creates data from noise or a latent vector, and a Discriminator (D), which determines whether the data is real or generated. These networks train competitively, improving each other iteratively to produce increasingly realistic outputs. However, GANs face challenges like mode collapse, unstable training, and convergence issues, leading to the adoption of strategies such as instance normalization and enhanced loss functions. Future research can focus on improving stability, developing novel loss functions, and applying GANs in unsupervised learning. Performance metrics like Inception Score, Fréchet Inception Distance (FID), and Structural Similarity Index (SSIM) are essential for evaluating and comparing GAN architectures. Additionally, ethical concerns, including the misuse of GANs for deepfakes and synthetic data, underscore the importance of transparency, accountability, and ethical standards in research and deployment. This review provides an accessible introduction to GANs for novice researchers, along with a detailed analysis of their limitations, applications, and future prospects, offering valuable insights and direction for advancing this field.