Algoritma: Jurnal Matematika, Ilmu Pengetahuan Alam, Kebumian dan Angkasa
Vol. 2 No. 6 (2024): Algoritma : Jurnal Matematika, Ilmu pengetahuan Alam, Kebumian dan Angkasa

Penerapan Metode Runge-Kutta Orde 3 Untuk Penyelesaian Persamaan Diferensial Biasa : Studi Kasus di Matlab

Asri cahyati sitorus pane (Unknown)
Novaria Br. Saragih (Unknown)
Jadata Dompak Ambarita (Unknown)



Article Info

Publish Date
11 Oct 2024

Abstract

This research studies the application of the nth order Runge-kutta method as a numerical solution to ordinary differential equations. This method was chosen because it is able to provide high accuracy and flexibility in various PDB problems. We implement the nth-order Runge-Kutta algorithm in MATLAB and compare with other numerical methods, such as Euler's method. The results show that the nth order Runge-Kutta method is able to produce more accurate solutions, especially for nonlinear systems. This research makes a significant contribution to the development of numerical solutions for PDB and shows the potential of MATLAB as an effective tool for numerical simulation. Sensitivity analyzes of parameters and time steps were also performed to understand the impact of variations on stability and convergence.

Copyrights © 2024






Journal Info

Abbrev

Algoritma

Publisher

Subject

Earth & Planetary Sciences Mathematics

Description

Bidang kajian dalam jurnal ini termasuk sub rumpun Ilmu Matematika, Ilmu Pengetahuan Alam, Kebumian dan Angkasa. Algoritma : Jurnal Matematika, Ilmu pengetahuan Alam, Kebumian dan ...