Kanker payudara masih menjadi salah satu penyebab utama kematian akibat kanker pada wanita di seluruh dunia. Deteksi dini melalui skrining rutin menggunakan mammogram terbukti efektif dalam mengurangi angka kematian. Namun, interpretasi mammogram secara manual memerlukan waktu, bersifat subjektif, dan sering kali membutuhkan radiolog yang berpengalaman. Untuk mengatasi tantangan ini, penelitian ini mengusulkan arsitektur Ensemble U-Net untuk melakukan segmentasi kanker payudara secara otomatis pada citra mammogram. Proses segmentasi melibatkan beberapa langkah, termasuk praproses (penghapusan latar belakang, penghapusan otot pektoral, peningkatan kontras, dan pengubahan ukuran), dilanjutkan dengan segmentasi menggunakan ensemble model: Inception V3-U-Net, ResNet50-U-Net, VGG19-U-Net, dan U-Net kustom. Segmentasi akhir dicapai dengan menggunakan voting soft dan filter Gaussian 2D untuk mereduksi noise, diikuti dengan thresholding untuk segmentasi biner. Pendekatan ensemble menunjukkan peningkatan akurasi segmentasi dengan menggabungkan kekuatan dari beberapa model U-Net. Kinerja model dievaluasi menggunakan metrik seperti akurasi, sensitivitas, spesifisitas, koefisien Dice, dan Intersection over Union (IoU). Hasil eksperimen menunjukkan bahwa Ensemble U-Net memiliki kinerja yang lebih baik dibandingkan dengan model individu, terutama pada citra mammogram yang kompleks.
Copyrights © 2024