Infotekmesin
Vol 16 No 1 (2025): Infotekmesin: Januari 2025

Perbandingan Random Forest dan K-Nearest Neighbors untuk Klasifikasi Body Mass Index Menggunakan SMOTE-ENN untuk Mengatasi Ketidakseimbangan Data pada Analisis Kesehatan

Naufal Yogi Aptana (Unknown)
Ikhsan, Ali Nur (Unknown)
Maulana Baihaqi, Wiga (Unknown)
Ajeng Widiawati, Chyntia Raras (Unknown)



Article Info

Publish Date
30 Jan 2025

Abstract

This study aims to compare the Random Forest and K-Nearest Neighbors (KNN) algorithms in Body Mass Index (BMI) classification using the SMOTE-ENN method to address data imbalance. The dataset consists of 2111 entries with demographic and health attributes of individuals. Data imbalance poses a significant challenge that may affect the accuracy of machine learning models. The SMOTE-ENN combination was employed to improve data distribution, enabling models to recognize patterns in minority classes better. Key evaluation factors included both algorithms' accuracy, precision, recall, and F1-score. Results indicate that the Random Forest algorithm achieved higher performance with 100% accuracy than KNN with 96% after applying SMOTE-ENN. These findings highlight the unique contribution of SMOTE-ENN in handling imbalanced data, enhancing classification model quality, and significantly impacting machine learning applications in healthcare.

Copyrights © 2025






Journal Info

Abbrev

infotekmesin

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering Mechanical Engineering

Description

INFOTEKMESIN is a peer-reviewed open-access journal with e-ISSN 2685-9858 and p-ISSN: 2087-1627 published by Pusat Penelitian dan Pengabdian Masyarakat (P3M) Politeknik Negeri Cilacap. The journal invites scientists and engineers to exchange and disseminate theoretical and practice-oriented in the ...