Underwater wireless sensor networks (UWSNs) have recently offered chances to investigate oceans and thus enhance the underwater world. WSNs are imperative for discovering the ocean region. Software-defined networking (SDN) improves flexibility and uses the clustering method to improve lifespan. This article introduces the Development of a clustering process with a Bayesian algorithm (CPBA) for optimal route formation in software-defined radio UWSN. The clustering concept improves energy efficiency; however, cluster head (CH) selection is challenging. The present clustering mechanisms could be more successful in suitably assigning the node's energy. This mechanism utilizes a slap swarm optimization algorithm to pick out the optimal CH by node energy and distance among inter-cluster as well as intra-cluster. In addition, the Bayesian algorithm selects the best forwarder from sender to base station. Thus, enhances efficiency. The simulation results demonstrate that the UWSN improves both the 23% packet forward ratio and 0.014 joule energy. Furthermore, it minimizes the 30% network delay.
Copyrights © 2025