Peningkatan kebutuhan akan air minum berkualitas menuntut pengembangan metode yang andal untuk menentukan potabilitas air. Penelitian ini bertujuan untuk menerapkan algoritma K-Nearest Neighbors (KNN) dalam memprediksi kualitas air minum berdasarkan dataset Water Quality dari Kaggle. Dataset mencakup 3.276 data dengan 9 parameter, seperti pH, kekerasan, dan kandungan karbon organik, serta satu atribut target yang menunjukkan kelayakan konsumsi. Penelitian ini akan menerapkan algoritma KNN dengan berbagai nilai (k), dan mengevaluasi kinerja model menggunakan metrik akurasi dan Jaccard Similarity. Hasil penelitian menunjukkan bahwa algoritma KNN dalam memprediksi kualitas air minum mencapai akurasi terbaik sebesar 58% pada nilai (k) = 2, hasil ini menunjukkan bahwa metode ini cukup baik meskipun perlu pengembangan lebih lanjut dengan metode lain untuk meningkatkan akurasi. Penelitian ini memberikan kontribusi pada implementasi teknologi pembelajaran mesin dalam pengelolaan sumber daya air.
Copyrights © 2025