JIKA (Jurnal Informatika)
Vol 9, No 1 (2025): JIKA (Jurnal Informatika)

OPTIMASI PREDIKSI RISIKO KREDIT DENGAN PREPROCESSING DAN HYPERPARAMETER TUNING

Rais, Amin Nur (Unknown)
Warjiyono, Warjiyono (Unknown)
Putra, Jordy Lasmana (Unknown)



Article Info

Publish Date
31 Jan 2025

Abstract

Risiko kredit menjadi tantangan dalam industri keuangan, yang dapat berdampak pada stabilitas lembaga keuangan. Penelitian ini mengevaluasi kinerja model machine learning dalam memprediksi risiko kredit menggunakan dataset dari Kaggle. Empat model yang diuji adalah Logistic Regression, Random Forest, Gradient Boosting, dan K-Nearest Neighbors (KNN), yang masing-masing diuji dalam tiga versi: baseline, preprocessing, dan tuned. Proses preprocessing mencakup penanganan nilai hilang, encoding fitur kategori, dan standarisasi fitur numerik. Model dievaluasi berdasarkan akurasi, presisi, recall, dan F1-score. Hasil penelitian menunjukkan bahwa model Gradient Boosting (Tuned) memberikan performa terbaik dengan akurasi 93.79%, presisi 94.91%, recall 76.05%, dan F1-score 84.44%. Penelitian ini memberikan manfaat bagi lembaga keuangan dalam memilih model yang optimal untuk memprediksi risiko kredit dan mendukung pengambilan keputusan berbasis data.

Copyrights © 2025






Journal Info

Abbrev

jika

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management

Description

Penlitian dan Pengabdian Masyarakat merupakan Tolak Ukur aktivitas Dosen Perguruan Tinggi, berdasarkan hal tersebut maka dengan ini program studi teknik informatika di Universitas Muhammadiyah Tangerang menyediakan lahan untuk penerbitan jurnal penelitian yang dilakukan oleh dosen. Jurnal ini ...