Wood is an important natural resource in construction and the furniture industry, with various types possessing unique characteristics. The selection of wood types is often done manually, which is prone to errors that can negatively impact the working process, product quality, and the sustainability of the forests that source the wood. Therefore, this research aims to improve classification accuracy through the application of technology. This study utilizes Convolutional Neural Network (CNN) with the VGG16 architecture to process images in analyzing the visual characteristics of wood, with the goal of building a model capable of classifying wood types based on images. The dataset used consists of 1,584 samples of wood images sourced from Kaggle. Four models were tested with variations in the training and validation data splits, as well as the use of Adam and Adamax optimizers, over 100 epochs. Model 1 achieved a training accuracy of 96.68% and a testing accuracy of 98.10%. Model 2, with a training accuracy of 99.47% and a testing accuracy of 98.41%, showed the best performance. Models 3 and 4 also yielded testing accuracies of 97.46% and 97.78%, respectively. The results of this study indicate that the application of CNN with the VGG16 architecture can enhance the effectiveness of wood type classification and contribute to more accurate and efficient wood selection practices.
Copyrights © 2025