IAES International Journal of Robotics and Automation (IJRA)
Vol 14, No 1: March 2025

Optimizing robot anomaly detection through stochastic differential approximation and Brownian motion

Pillai, Branesh M. (Unknown)
Mishra, Arush (Unknown)
Thomas, Rijo Jacob (Unknown)
Suthakorn, Jackrit (Unknown)



Article Info

Publish Date
01 Mar 2025

Abstract

This paper presents an adaptive approximation method for detecting anomalous patterns in extensive data streams gathered by mobile robots operating in rough terrain. Detecting anomalies in such dynamic environments poses a significant challenge, as it requires continuous monitoring and adjustment of robot movement, which can be resource intensive. To address this, a cost-effective solution is proposed that incorporates a threshold mechanism to track transitions between different regions of the data stream. The approach utilizes stochastic differential approximation (SDA) and optimistic optimization of Brownian motion to determine optimal parameter values and thresholds, ensuring efficient anomaly detection. This method focuses on minimizing the movement cost of the robots while maintaining accuracy in anomaly identification. By applying this technique, robots can dynamically adjust their movements in response to changes in the data stream, reducing operational expenses. Moreover, the temporal performance of the data stream is prioritized, a key factor often overlooked by conventional search engines. This paper demonstrates how the approach enhances the precision of anomaly detection in resource-constrained environments, making it particularly beneficial for real-time applications in rugged terrains.

Copyrights © 2025






Journal Info

Abbrev

IJRA

Publisher

Subject

Automotive Engineering Electrical & Electronics Engineering

Description

Robots are becoming part of people's everyday social lives and will increasingly become so. In future years, robots may become caretaker assistants for the elderly, or academic tutors for our children, or medical assistants, day care assistants, or psychological counselors. Robots may become our ...