Thomas, Rijo Jacob
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Optimizing robot anomaly detection through stochastic differential approximation and Brownian motion Pillai, Branesh M.; Mishra, Arush; Thomas, Rijo Jacob; Suthakorn, Jackrit
IAES International Journal of Robotics and Automation (IJRA) Vol 14, No 1: March 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v14i1.pp19-30

Abstract

This paper presents an adaptive approximation method for detecting anomalous patterns in extensive data streams gathered by mobile robots operating in rough terrain. Detecting anomalies in such dynamic environments poses a significant challenge, as it requires continuous monitoring and adjustment of robot movement, which can be resource intensive. To address this, a cost-effective solution is proposed that incorporates a threshold mechanism to track transitions between different regions of the data stream. The approach utilizes stochastic differential approximation (SDA) and optimistic optimization of Brownian motion to determine optimal parameter values and thresholds, ensuring efficient anomaly detection. This method focuses on minimizing the movement cost of the robots while maintaining accuracy in anomaly identification. By applying this technique, robots can dynamically adjust their movements in response to changes in the data stream, reducing operational expenses. Moreover, the temporal performance of the data stream is prioritized, a key factor often overlooked by conventional search engines. This paper demonstrates how the approach enhances the precision of anomaly detection in resource-constrained environments, making it particularly beneficial for real-time applications in rugged terrains.