IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 14, No 2: April 2025

An enhanced cascade ensemble method for big data analysis

Izonin, Ivan (Unknown)
Muzyka, Roman (Unknown)
Tkachenko, Roman (Unknown)
Gregus, Michal (Unknown)
Korzh, Roman (Unknown)
Yemets, Kyrylo (Unknown)



Article Info

Publish Date
01 Apr 2025

Abstract

In the digital age, the proliferation of data presents both challenges and opportunities, particularly in the realm of big data, which is characterized by its volume, velocity, and variety. Machine learning is a crucial technology for extracting insights from these vast datasets. Among machine learning methods, ensemble methods, and especially cascading ensembles, are highly effective for big data analysis. While it is true that the training procedures for cascade ensembles can be time-consuming and may have limitations in terms of accuracy, this paper proposes a solution to enhance their performance. Our method involves using stochastic gradient descent (SGD) classifiers, an improved training data separation algorithm, and integrating principal component analysis (PCA) at each ensemble level. We are confident that these enhancements lead to improved results and accuracy. The proposed approach is designed to enhance both the generalization properties and accuracy of the ensemble (3%), while also reducing its training time. Results from modelling on a real-world biomedical dataset demonstrate significant reductions in training duration, improvements in generalization properties, and enhanced accuracy when compared to other possible implementations of the ensemble.

Copyrights © 2025






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...