Korzh, Roman
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

An enhanced cascade ensemble method for big data analysis Izonin, Ivan; Muzyka, Roman; Tkachenko, Roman; Gregus, Michal; Korzh, Roman; Yemets, Kyrylo
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i2.pp963-974

Abstract

In the digital age, the proliferation of data presents both challenges and opportunities, particularly in the realm of big data, which is characterized by its volume, velocity, and variety. Machine learning is a crucial technology for extracting insights from these vast datasets. Among machine learning methods, ensemble methods, and especially cascading ensembles, are highly effective for big data analysis. While it is true that the training procedures for cascade ensembles can be time-consuming and may have limitations in terms of accuracy, this paper proposes a solution to enhance their performance. Our method involves using stochastic gradient descent (SGD) classifiers, an improved training data separation algorithm, and integrating principal component analysis (PCA) at each ensemble level. We are confident that these enhancements lead to improved results and accuracy. The proposed approach is designed to enhance both the generalization properties and accuracy of the ensemble (3%), while also reducing its training time. Results from modelling on a real-world biomedical dataset demonstrate significant reductions in training duration, improvements in generalization properties, and enhanced accuracy when compared to other possible implementations of the ensemble.