Jurnal Teknologi Informasi dan Ilmu Komputer
Vol 12 No 1: Februari 2025

Penerapan Teachable Machine Dan Raspberry Pi Pada Sistem Klasifikasi Citra Untuk Inspeksi Cacat Kain

Nugroho, Emmanuel Agung (Unknown)
Setiawan, Joga Dharma (Unknown)
M, Munadi (Unknown)
Rustiyanti, Alifa (Unknown)



Article Info

Publish Date
27 Feb 2025

Abstract

Industri tekstil memainkan peran krusial dalam ekonomi nasional, menghadapi tantangan signifikan dalam menjaga kualitas produk untuk memenuhi kepuasan konsumen. Cacat produksi, seperti cacat jarang dan cacat slap pada kain, merupakan salah satu faktor utama yang mempengaruhi kualitas produk tekstil. Penelitian ini bertujuan untuk mengembangkan sistem inspeksi cacat kain secara otomatis dengan menggunakan metode pemrosesan citra digital dan machine learning. Sistem ini dirancang untuk diintegrasikan pada mesin penggulungan kain sebagai sistem inspeksi awal sebelum kain didistribusikan. Metode yang digunakan meliputi supervised learning untuk klasifikasi citra kain, memanfaatkan perangkat lunak Google Teachable Machine dan algoritma Convolutional Neural Network (CNN) yang diimplementasikan dengan OpenCV. Perangkat keras yang digunakan terdiri dari kamera web Logitech D320 untuk akuisisi gambar dan Raspberry Pi-3B sebagai pengolah citra. Sistem ini diuji untuk mendeteksi tiga kategori kain: kain bagus, cacat jarang, dan cacat slap. Hasil pengujian menunjukkan bahwa sistem memiliki rata-rata waktu inferensi sebesar 142,47 ms dengan kecepatan rata-rata 6,46 frame per detik (FPS) dan akurasi klasifikasi mencapai 98,48%. Dengan implementasi sistem ini, diharapkan dapat meningkatkan efisiensi produksi, memperkuat kontrol kualitas di industri tekstil, mengurangi intervensi manual, dan menurunkan potensi kerugian akibat produk cacat.   Abstract The textile industry plays a crucial role in the national economy, facing significant challenges in maintaining product quality to meet consumer satisfaction. Production defects, such as rare defects and slap defects in fabrics, are key factors that affect the quality of textile products. This research aims to develop an automated fabric defect inspection system using digital image processing and machine learning methods. The system is designed to be integrated into fabric winding machines as an initial inspection system before the fabric is distributed. The methods used include supervised learning for fabric image classification, utilizing Google Teachable Machine software and the Convolutional Neural Network (CNN) algorithm implemented with OpenCV. The hardware used consists of a Logitech D320 webcam for image acquisition and a Raspberry Pi-3B as the image processor. The system was tested to detect three categories of fabric: good fabric, rare defects, and slap defects. The test results showed that the system achieved an average inference time of 142.47 ms with an average speed of 6.46 frames per second (FPS) and a classification accuracy of 98.48%. With the implementation of this system, it is expected to enhance production efficiency, strengthen quality control in the textile industry, reduce manual intervention, and decrease potential losses due to defective products.

Copyrights © 2025






Journal Info

Abbrev

JTIIK

Publisher

Subject

Computer Science & IT Engineering

Description

Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK) merupakan jurnal nasional yang diterbitkan oleh Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya (UB), Malang sejak tahun 2014. JTIIK memuat artikel hasil-hasil penelitian di bidang Teknologi Informasi dan Ilmu Komputer. JTIIK berkomitmen ...