Jurnal Teknologi dan Sistem Komputer
Volume 4, Issue 4, Year 2016 (October 2016)

Prediksi Kedatangan Turis Asing ke Indonesia Menggunakan Backpropagation Neural Networks

Haviluddin Haviluddin (Departement of Computer Science, Universitas Mulawarman)
Zainal Arifin (Departement of Computer Science, Universitas Mulawarman)
Awang Harsa Kridalaksana (Departement of Computer Science, Universitas Mulawarman)
Dedy Cahyadi (Departement of Computer Science, Universitas Mulawarman)



Article Info

Publish Date
31 Oct 2016

Abstract

In this paper, a backpropagation neural network (BPNN) method with time series data has been explored. The BPNN method to predict the foreign tourist’s arrival to Indonesia datasets have been implemented. The foreign tourist’s arrival datasets were taken from the central agency on statistics (BPS) Indonesia. The experimental results showed that the BPNN method with two hidden layers was able to forecast foreign tourist’s arrival to Indonesia. Where the mean square error (MSE) as forecasting accuracy has been indicated. In this study, the BPNN method is able and recommended to be alternative methods for predicting time series datasets. Also, the BPNN method showed that effective and easy to use. In other words, BPNN method is capable of producing a good value of forecasting.

Copyrights © 2016






Journal Info

Abbrev

JTSISKOM

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

Jurnal Teknologi dan Sistem Komputer (JTSiskom, e-ISSN: 2338-0403) adalah terbitan berkala online nasional yang diterbitkan oleh Departemen Teknik Sistem Komputer, Universitas Diponegoro, Indonesia. JTSiskom menyediakan media untuk mendiseminasikan hasil-hasil penelitian, pengembangan dan ...