JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika)
Vol 10, No 2 (2025)

PREDIKSI PENYAKIT DIABETES BERDASARKAN PERBANDINGAN KLASIFIKASI METODE K-NEAREST NEIGHBOR, NAÏVE BAYES, DAN DECISION TREE MENGGUNAKAN RAPID MINER

Ardianto, Muhammad Rezanur (Unknown)
Rushendra, Rushendra (Unknown)



Article Info

Publish Date
05 Mar 2025

Abstract

Pada era digital seperti saat ini kegiatan manusia dipermudah dengan adanya teknologi yang tak terkecuali dalam bidang penjualan makanan dan minuman, namun dengan kemudahan tersebut mengakibatkan kesulitan masyarakat dalam melihat gizi dari makanan dan minuman yang mengakibatkan terjangkitnya penyakit Diabetes, akan tetapi penyakit tersebut banyak faktor yang dapat memengaruhinya . Oleh sebab itu penelitian ini dilakukan sebuah prediksi terjangkitnya penyakit Diabetes dengan melakukan perbandingan algoritma K-NN, Naïve Bayes, dan Decision Tree. Hasil dari perbandingan algoritma yang paling cocok pada kondisi default yaitu Decision Tree dengan tingkat akurasi 93,60%, namun untuk menghindari overfitting dan underfitting perlu dilakukan optimasi K cross validation pada K=5 sampai K=10, kemudian dilakukan optimasi nilai Konstanta K pada K=10. algoritma K-NN dengan K=2, sehingga didapatkan hasil algoritma K-NN lebih cocok untuk prediksi penyakit diabetes dengan nilai akurasi 96.13%.

Copyrights © 2025






Journal Info

Abbrev

Publisher

Subject

Computer Science & IT Education

Description

JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) e-ISSN: 2540 - 8984 was made to accommodate the results of scientific work in the form of research or papers are made in the form of journals, particularly the field of Information Technology. JIPI is a journal that is managed by the ...