INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi
Vol 9 No 1 (2025): February 2025

Optimizing Rice Plant Disease Classification Using Data Augmentation with GANs on Convolutional Neural Networks

Agustin, Tinuk (Unknown)
Saputro, Indrawan Ady (Unknown)
Rahmadi, Mochammad Luthfi (Unknown)



Article Info

Publish Date
23 Feb 2025

Abstract

Background: Rice disease classification using CNN models faces challenges due to limited data, particularly in minority classes, and inconsistent image quality, which affect model performance. Data augmentation techniques can potentially enhance classification accuracy by improving data diversity and quality. Objective: This study evaluates the effectiveness of data augmentation techniques, specifically classical augmentation and Deep Convolutional Generative Adversarial Networks (DCGAN), in improving CNN performance for rice disease classification. Methods: A quantitative study was conducted using four CNN training scenarios: no augmentation, classical augmentation, DCGAN augmentation, and a combination of both. Model accuracy was analyzed to determine the impact of each augmentation technique. Results: The baseline CNN model achieved an accuracy of 91.88%. Classical augmentation improved accuracy by 2.56%, while DCGAN augmentation led to a 5.44% increase. The combination of classical augmentation and DCGAN yielded the highest accuracy of 98.13%. Conclusion: Data augmentation significantly enhances CNN performance in rice disease classification, with the combined approach of classical augmentation and DCGAN proving to be the most effective. These findings highlight the importance of augmentation techniques in addressing data limitations and improving classification accuracy. Future research should explore additional augmentation strategies and test the model across different datasets to further validate its effectiveness.

Copyrights © 2025






Journal Info

Abbrev

intensif

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management

Description

INTENSIF Journal is a publication container for research in various fields related to information systems. These fields includeInformation System, Software Engineering, Data Mining, Data Warehouse, Computer Networking, Artificial Intelligence, e-Bussiness, e-Government, Big Data, Application ...