Buletin Ilmiah Sarjana Teknik Elektro
Vol. 6 No. 4 (2024): December

Gray Level Co-Occurrence Matrix (GLCM)-based Feature Extraction for Rice Leaf Diseases Classification

Nugroho, Herminarto (Unknown)
Pramudito, Wahyu Agung (Unknown)
Laksono, Handoyo Suryo (Unknown)



Article Info

Publish Date
21 Jan 2025

Abstract

In this paper, we propose Gray Level Co-Occurrence Matrix (GLCM) based Feature Extraction to identify and classify rice leaf diseases. An Artificial Neural Network (ANN) algorithm is used to train a classification model. Various statistical features such as energy, contrast, homogeneity, and correlation are extracted from the GLCM matrix to describe the image texture features. After feature removal, an ANN classification model was trained using a dataset consisting of images of healthy and diseased rice leaves. The ANN training process involves optimizing weights and bias using backpropagation to achieve accurate classification. After training, the ANN model is tested using split test data to measure classification performance. The experimental results show that the GLCM method is effective in helping improve accuracy, validation of accuracy, loss, validation of loss, precision, and recall.

Copyrights © 2024






Journal Info

Abbrev

biste

Publisher

Subject

Electrical & Electronics Engineering

Description

Buletin Ilmiah Sarjana Teknik Elektro (BISTE) adalah jurnal terbuka dan merupakan jurnal nasional yang dikelola oleh Program Studi Teknik Elektro, Fakultas Teknologi Industri, Universitas Ahmad Dahlan. BISTE merupakan Jurnal yang diperuntukkan untuk mahasiswa sarjana Teknik Elektro. Ruang lingkup ...