Jurnal Pilar Nusa Mandiri
Vol. 21 No. 1 (2025): Pilar Nusa Mandiri : Journal of Computing and Information System Publishing Pe

PERFORMANCE COMPARISON OF RANDOM FOREST REGRESSION, SVR MODELS IN STOCK PRICE PREDICTION

Urrochman, Maysas Yafi (Unknown)
Asy'ari, Hasyim (Unknown)
Hizham, Fadhel Akhmad (Unknown)



Article Info

Publish Date
14 Mar 2025

Abstract

The stock market is characterized by high volatility and complexity, making it an intriguing and challenging subject for researchers and practitioners. This study aims to predict stock prices by comparing the performance of two machine learning models: Random Forest Regression and Support Vector Regression (SVR). These models were selected for their ability to handle complex data and high volatility. The dataset used in this study consists of BNI stock data over the last five years (2019–2024), comprising a total of 1,211 data points. Testing was conducted using a cross-validation approach, and model performance was evaluated based on several metrics, including MSE, R², RMSE, MAPE, MAE, and Score. The results indicate that Random Forest Regression outperforms SVR. The model achieved an MAE of 17.766, an RMSE of 22.376, and an R² of 0.997. These findings suggest that Random Forest Regression is more effective in predicting stock prices, particularly in unstable market conditions. This study recommends Random Forest Regression as a reliable model for stock price prediction, with potential applications in other stock markets with similar characteristics.

Copyrights © 2025






Journal Info

Abbrev

pilar

Publisher

Subject

Computer Science & IT

Description

Jurnal Pilar merupakan jurnal ilmiah yang diterbitkan oleh program studi sistem informasi STMIK Nusa Mandiri. Jurnal ini berisi tentang karya ilmiah yang bertemakan: Rekayasa Perangkat Lunak, Sistem Pakar, Sistem Penunjang, Keputusan, Perancangan Sistem Informasi, Data Mining, Pengolahan ...