ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika
Vol 13, No 1: Published January 2025

Performance Comparison of 1D-CNN and LSTM Deep Learning Models for Time Series-Based Electric Power Prediction

SUKATMO, SUKATMO (Unknown)
NUGROHO, HAPSORO AGUNG (Unknown)
RUSANTO, BENYAMIN HERYANTO (Unknown)
SOEKIRNO, SANTOSO (Unknown)



Article Info

Publish Date
17 Feb 2025

Abstract

Accurate electrical power prediction is essential for efficient energy management, especially in institutions with dynamic energy needs. This study compares the performance of 1D-CNN and LSTM for time series based electrical power prediction, using a dataset from the Building Automation System (BAS) of STMKG building. The evaluation metrics Mean Squared Error (MSE) and Mean Absolute Error (MAE) are used to measure accuracy. The results show that the LSTM had an average MSE value of 3.35E-04±0.00013 and an MAE of 0.01312±0.0079 across 10 trials. This is slightly better than the 1D-CNN, which had an average MSE value of 4.68E-04±0.0003 and an MAE of 0.01855±0.00586. Despite the marginal difference, 1D-CNN provides a computational time efficiency advantage of 63.08s, 1D-CNN is about 84.19% faster.

Copyrights © 2025






Journal Info

Abbrev

elkomika

Publisher

Subject

Electrical & Electronics Engineering Engineering

Description

Jurnal ELKOMIKA diterbitkan 3 (tiga) kali dalam satu tahun pada bulan Januari, Mei dan September. Jurnal ini berisi tulisan yang diangkat dari hasil penelitian dan kajian analisis di bidang ilmu pengetahuan dan teknologi, khususnya pada Teknik Energi Elektrik, Teknik Telekomunikasi, dan Teknik ...