Building of Informatics, Technology and Science
Vol 6 No 4 (2025): March 2025

Pendekatan Machine Learning dengan Teknik Stacking untuk Memprediksi Kualitas Air MinumPendekatan Machine Learning dengan Teknik Stacking untuk Memprediksi Kualitas Air Minum

D, Ishak Bintang (Unknown)
Andono, Pulung Nurtantio (Unknown)
Pramunendar, Ricardus Anggi (Unknown)
Winarno, Agus (Unknown)
Darmawan, Aditya Aqil (Unknown)



Article Info

Publish Date
13 Mar 2025

Abstract

Safe drinking water quality is essential for public health, yet environmental pollution has significantly degraded its quality. Manual methods such as WQI and STORET are inefficient, prompting this study to propose a machine learning-based classification system for more accurate water potability assessment. The Water Potability dataset from Kaggle is used, consisting of 3,276 samples with nine key parameters. The preprocessing stage includes data imputation, normalization, feature engineering, and oversampling with SMOTE. The applied models include LGBM, Random Forest, GBM, and XGBoost, optimized using Bayesian techniques and stacking ensemble to enhance accuracy. Results show that the stacking ensemble achieves an accuracy of 85.38%, precision of 88.02%, recall of 85.38%, and F1-score of 85.23%, outperforming individual models. This system enables real-time water quality monitoring with faster and more accurate results, supporting decision-making in sanitation policies and clean water availability.

Copyrights © 2025






Journal Info

Abbrev

bits

Publisher

Subject

Computer Science & IT

Description

Building of Informatics, Technology and Science (BITS) is an open access media in publishing scientific articles that contain the results of research in information technology and computers. Paper that enters this journal will be checked for plagiarism and peer-rewiew first to maintain its quality. ...