Jurnal Teknik Komputer AMIK BSI
Vol 11, No 1 (2025): Periode Januari 2025

Application of Random Forest Algorithm To Classify Credit Status of KPR Customers at Bank BTN Based on Machine Learning

Fitri, Maysade (Unknown)
Sobri, Ahmad (Unknown)
Rizki, Fido (Unknown)



Article Info

Publish Date
14 Feb 2025

Abstract

In the banking sector, this study is very suitable for determining and improving accuracy and determining credit status classification. This study aims to apply the Exploratory Data Analysis (EDA) method in supporting credit status classification at PT. Bank Tabungan Negara KCP Lubuklinggau Persero Tbk. Exploratory Data Analysis (EDA) as data exploration and Machine Learning Algorithms such as Random Forest as modeling in determining classification. The results show that the Exploratory Data Analysis (EDA) method successfully determines data patterns, while Random Forest in modeling achieves accuracy, recall, Precision, F1-Score of 100% in predicting the credit status of KPR customers. This method is expected to be useful in making decisions on more accurate credit status by the bank.

Copyrights © 2025






Journal Info

Abbrev

jtk

Publisher

Subject

Computer Science & IT

Description

Jurnal Teknik Komputer merupakan jurnal ilmiah yang diterbitkan oleh LPPM Universitas Bina Sarana Informatika. Jurnal ini berisi tentang karya ilmiah hasil penelitian yang bertemakan: Networking, Robotika, Aplikasi Sains, Animasi Interaktif, Pengolahan Citra, Sistem Pakar, Sistem Komputer, Soft ...