Journal of Robotics and Control (JRC)
Vol. 6 No. 1 (2025)

Enhancing Diabetic Retinopathy Classification in Fundus Images using CNN Architectures and Oversampling Technique

Pamungkas, Yuri (Unknown)
Triandini, Evi (Unknown)
Yunanto, Wawan (Unknown)
Thwe, Yamin (Unknown)



Article Info

Publish Date
20 Feb 2025

Abstract

Diabetic Retinopathy (DR) is a severe complication of diabetes mellitus that affects the retinal blood vessels and is a leading cause of blindness in productive-age individuals. The global increase in diabetes prevalence requires an effective DR classification system for early detection. This study aims to develop a DR classification system using several CNN architectures, such as EfficientNet-B4, ResNet-50, DenseNet-201, Xception, and Inception-ResNet-v2, with the application of the SMOTE oversampling technique to address data class imbalance. The dataset used is APTOS 2019, which has an unbalanced class distribution. Two scenarios were tested, the first without data balancing and the second with SMOTE implementation. The test results show that in the first scenario, Xception achieved the highest accuracy at 80.61%, but model performance was still limited due to majority class dominance. The application of SMOTE in the second scenario significantly improved model accuracy, with EfficientNet-B4 achieving the highest accuracy of 97.78%. Additionally, precision and recall increased dramatically in the second scenario, demonstrating SMOTE's effectiveness in enhancing the model's ability to detect minority classes and reduce prediction errors. DenseNet-201 achieved the highest precision at 99.28%, while Inception-ResNet-v2 recorded the highest recall at 98.57%. Overall, this study proves that the SMOTE method effectively addresses class imbalance in the fundus dataset and significantly improves CNN model performance. Although data balancing can help improve model quality by dealing with data imbalances, it comes at a higher computational cost. Using data balancing techniques with SMOTE significantly increased the iteration time per round on all tested CNN architectures.

Copyrights © 2025






Journal Info

Abbrev

jrc

Publisher

Subject

Aerospace Engineering Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Mechanical Engineering

Description

Journal of Robotics and Control (JRC) is an international open-access journal published by Universitas Muhammadiyah Yogyakarta. The journal invites students, researchers, and engineers to contribute to the development of theoretical and practice-oriented theories of Robotics and Control. Its scope ...