Claim Missing Document
Check
Articles

Found 8 Documents
Search

Autonomous open-source electric wheelchair platform with internet-of-things and proportional-integral-derivative control Maneetham, Dechrit; Crisnapati, Padma Nyoman; Thwe, Yamin
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 6: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i6.pp6764-6777

Abstract

This study aims to improve the working model of autonomous wheelchair navigation for disabled patients using the internet of things (IoT). A proportional-integral-derivative (PID) control algorithm is applied to the autonomous wheelchair to control movement based on position coordinates and orientation provided by the global positioning system (GPS) and digital compass sensor. This system is controlled through the IoT system, which can be operated from a web browser. Autonomous wheelchairs are handled using a waypoint algorithm; ESP8266 is used as a microcontroller unit that acts as a bridge for transmitting data obtained by sensors and controlling the direct current (DC) motors as actuators. The proposed system and the autonomous wheelchair performance gave satisfactory results with a longitude and latitude error of 1.1 meters to 4.5 meters. This error is obtained because of the limitations of GPS with the type of Ublox Neo-M8N. As a starting point for further research, a mathematical model of a wheelchair was created, and pure pursuit control algorithm was used to simulate the movement. An open-source autonomous IoT platform for electric wheelchairs has been successfully created; this platform can help nurses and caretakers.
Work Fatigue Detection of Search and Rescue Officers Based on Hjorth EEG Parameters Pamungkas, Yuri; Indriani, Ratri Dwi; Crisnapati, Padma Nyoman; Thwe, Yamin
Journal of Robotics and Control (JRC) Vol 5, No 6 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i6.23511

Abstract

Work fatigue can cause a decrease in cognitive function, such as decreased thinking ability, concentration, and memory. A tired brain cannot work optimally, interfering with a person's ability to perform tasks that require complex thinking. In general, to evaluate work fatigue in a person, self-assessment activities using the Perceived Stress Scale (PSS) are the method most often used by researchers or practitioners. However, this method is prone to bias because sometimes people try to hide or exaggerate their tiredness at work. Therefore, we propose to evaluate people's work fatigue based on their EEG data in this study. A total of 25 participants from SAR officers recorded their EEG data in relaxed conditions (pre-SAR operations) and fatigue conditions (post-SAR operations). Recording was performed on the brain's left (fp1 t7) and right (fp2 t8) hemispheres. The EEG data is then processed by filtering, artifact removal using ICA method, signal decomposition into several frequency bands, and Hjorth feature extraction (activity, mobility, and complexity). The main advantage of Hjorth parameters compared to other EEG features is its ability to provide rich information about the complexity and mobility of the EEG signal in a relatively simple and fast way. Based on the results of activity feature extraction, feature values will tend to increase during the post-SAR operation conditions compared to the pre-operation SAR conditions. In addition, the results of the classification of pre-and post-operative SAR conditions using Bagged Tree algorithm (10-fold cross validation) show that the highest accuracy can be obtained is 94.8%.
Work Fatigue Detection of Search and Rescue Officers Based on Hjorth EEG Parameters Pamungkas, Yuri; Indriani, Ratri Dwi; Crisnapati, Padma Nyoman; Thwe, Yamin
Journal of Robotics and Control (JRC) Vol. 5 No. 6 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i6.23511

Abstract

Work fatigue can cause a decrease in cognitive function, such as decreased thinking ability, concentration, and memory. A tired brain cannot work optimally, interfering with a person's ability to perform tasks that require complex thinking. In general, to evaluate work fatigue in a person, self-assessment activities using the Perceived Stress Scale (PSS) are the method most often used by researchers or practitioners. However, this method is prone to bias because sometimes people try to hide or exaggerate their tiredness at work. Therefore, we propose to evaluate people's work fatigue based on their EEG data in this study. A total of 25 participants from SAR officers recorded their EEG data in relaxed conditions (pre-SAR operations) and fatigue conditions (post-SAR operations). Recording was performed on the brain's left (fp1 & t7) and right (fp2 & t8) hemispheres. The EEG data is then processed by filtering, artifact removal using ICA method, signal decomposition into several frequency bands, and Hjorth feature extraction (activity, mobility, and complexity). The main advantage of Hjorth parameters compared to other EEG features is its ability to provide rich information about the complexity and mobility of the EEG signal in a relatively simple and fast way. Based on the results of activity feature extraction, feature values will tend to increase during the post-SAR operation conditions compared to the pre-operation SAR conditions. In addition, the results of the classification of pre-and post-operative SAR conditions using Bagged Tree algorithm (10-fold cross validation) show that the highest accuracy can be obtained is 94.8%.
Hybrid object detection and distance measurement for precision agriculture: integrating YOLOv8 with rice field sidewalk detection algorithm Tungkasthan, Anucha; Jongsawat, Nipat; Crisnapati, Padma Nyoman; Thwe, Yamin
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i2.pp1507-1517

Abstract

This study aims to propose a new approach to semantic segmentation of sidewalk images in rice fields using the YOLOv8 algorithm, with the objective of enhancing agricultural monitoring and analysis. The experimental process involved preparing the development environment, extracting data from JSON, and training the model using YOLOv8. Evaluation reveals consistent and accurate sidewalk detection with a confidence score of 0.9-1.0 across various environmental conditions. Confusion matrix and precision-recall analysis confirmed the robustness and accuracy of the model. These findings validate the effectiveness of the approach in detecting and measuring sidewalks with high precision, potentially improving agricultural monitoring. The novelty of this study lies in the utilization of the RIFIS-D algorithm as an integral part of a hybrid approach with YOLOv8. This hybridization enriches the model with additional capability to detect the distance between the sidewalk and the tractor, addressing specific needs in agricultural applications. This contribution is significant in the advancement of automatic navigation and monitoring technology in agriculture, enabling the implementation of more sophisticated and efficient systems in field operations.
Impact of Hyperparameter Tuning on ResNet-UNet Models for Enhanced Brain Tumor Segmentation in MRI Scans Pamungkas, Yuri; Triandini, Evi; Yunanto, Wawan; Thwe, Yamin
International Journal of Robotics and Control Systems Vol 5, No 2 (2025)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v5i2.1802

Abstract

Brain tumor segmentation in MRI scans is a crucial task in medical imaging, enabling early diagnosis and treatment planning. However, accurately segmenting tumors remains a challenge due to variations in tumor shape, size, and intensity. This study proposes a ResNet-UNet-based segmentation model using LGG dataset (from 110 patients), optimized through hyperparameter tuning to enhance segmentation performance and computational efficiency. The proposed model integrates different ResNet architectures (ResNet18, ResNet34, ResNet50, ResNet101, and ResNet152) with UNet, evaluating their performance under various learning rates (0.01, 0.001, 0.0001), optimizer types (Adam, SGD, RMSProp), and activation functions (Sigmoid). The methodology involves training and evaluating each model using Loss Function, Mean Intersection over Union (mIoU), Dice Similarity Coefficient (DSC), and Iterations per Second as performance metrics. Experiments were conducted on MRI brain tumor datasets to assess the impact of hyperparameter tuning on model performance. Results show that lower learning rates (0.0001 and 0.001) improve segmentation accuracy, while Adam and RMSProp outperform SGD in minimizing segmentation errors. Deeper models (ResNet50, ResNet101, and ResNet152) achieve the highest mIoU (up to 0.902) and DSC (up to 0.928), but at the cost of slower inference speeds. ResNet50 and ResNet34 with RMSProp or Adam provide an optimal trade-off between accuracy and computational efficiency. In conclusion, hyperparameter tuning significantly impacts MRI segmentation performance, and selecting an appropriate learning rate, optimizer, and model depth is crucial for achieving high segmentation accuracy with minimal computational cost.
Enhancing Diabetic Retinopathy Classification in Fundus Images using CNN Architectures and Oversampling Technique Pamungkas, Yuri; Triandini, Evi; Yunanto, Wawan; Thwe, Yamin
Journal of Robotics and Control (JRC) Vol. 6 No. 1 (2025)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v6i1.25331

Abstract

Diabetic Retinopathy (DR) is a severe complication of diabetes mellitus that affects the retinal blood vessels and is a leading cause of blindness in productive-age individuals. The global increase in diabetes prevalence requires an effective DR classification system for early detection. This study aims to develop a DR classification system using several CNN architectures, such as EfficientNet-B4, ResNet-50, DenseNet-201, Xception, and Inception-ResNet-v2, with the application of the SMOTE oversampling technique to address data class imbalance. The dataset used is APTOS 2019, which has an unbalanced class distribution. Two scenarios were tested, the first without data balancing and the second with SMOTE implementation. The test results show that in the first scenario, Xception achieved the highest accuracy at 80.61%, but model performance was still limited due to majority class dominance. The application of SMOTE in the second scenario significantly improved model accuracy, with EfficientNet-B4 achieving the highest accuracy of 97.78%. Additionally, precision and recall increased dramatically in the second scenario, demonstrating SMOTE's effectiveness in enhancing the model's ability to detect minority classes and reduce prediction errors. DenseNet-201 achieved the highest precision at 99.28%, while Inception-ResNet-v2 recorded the highest recall at 98.57%. Overall, this study proves that the SMOTE method effectively addresses class imbalance in the fundus dataset and significantly improves CNN model performance. Although data balancing can help improve model quality by dealing with data imbalances, it comes at a higher computational cost. Using data balancing techniques with SMOTE significantly increased the iteration time per round on all tested CNN architectures.
SISRES: Web-Based Culinary Recommendation with Collaborative Filtering Aini, Qurrotul; Muhammad, Fadly Hakim; Rustamaji, Eri; Thwe, Yamin
Applied Information System and Management (AISM) Vol. 7 No. 1 (2024): Applied Information System and Management (AISM)
Publisher : Depart. of Information Systems, FST, UIN Syarif Hidayatullah Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/aism.v7i1.33798

Abstract

Due to its advantageous location on the border of Jakarta and Tangerang, Tangerang Selatan is a highly developed city. In this instance, the Tangerang Selatan Department of Culture and Tourism (Dispar Tangsel) is required to use the application to assist the general public in realizing the availability of information in the Tangerang Selatan area. Twenty to twenty-five restaurants submit applications each year to the Dispar Tangsel Tourism Business Registry (TDUP). Dispar Tangsel must choose and decide on TDUP licensing priorities from among TDUP requests in order to open a restaurant. The purpose of the research is to offer recommendations to the community on food choices. Rapid application development (RAD) was used in the system's development. Additionally, the collaborative filtering technique has been employed by the decision support system to determine the amount of criteria or weight for restaurants using the weighted sum algorithm and for restaurants using cosine-based similarity algorithms. Additionally, the system design tool made use of MySQL as a database, PHP, the Codeigniter framework, and the unified modeling language (UML). The result demonstrates that the system is capable of displaying the output in accordance with the user's expectations during black box testing, which evaluates the functionality of the system based on the specifications. Collaborative filtering in SISRES can yield a significant improvement in recommendation accuracy. By collectively analyzing user preferences and behaviors, the algorithm can provide more relevant and personalized recommendations.
A Review of EEG Applications in Neuromarketing: Methods, Insights, and Future Directions Pamungkas, Yuri; Thwe, Yamin; Karim, Abdul; Hashim, Uda
Buletin Ilmiah Sarjana Teknik Elektro Vol. 7 No. 4 (2025): December
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/biste.v7i4.14375

Abstract

EEG is increasingly applied in neuromarketing as it provides direct insights into consumer cognition and emotion beyond traditional self-report measures. However, challenges such as small samples, low ecological validity, and methodological limitations hinder its broader real-world application. The research contribution is a comprehensive synthesis of 40 empirical studies that examine EEG applications in neuromarketing, highlighting methodological approaches, analytical techniques, key insights, and persistent gaps that define the current state of the field. This review applied a structured comparative method by extracting and analyzing details from published EEG-based neuromarketing studies, including sample characteristics, device specifications, stimuli types, analytical techniques, and outcomes. The data were organized into a review table and further examined for patterns, strengths, limitations, and emerging opportunities. The results reveal that EEG can reliably classify consumer preferences when paired with deep learning models, while EEG indices such as neural synchrony and frontal alpha asymmetry predict advertising effectiveness and purchase intention. Emotional and attentional processes were consistently reflected in ERP components, and multimodal integration with physiological and behavioral data improved predictive validity. Nonetheless, most studies relied on small, homogeneous samples and static laboratory stimuli, limiting generalizability. In conclusion, EEG holds strong potential for advancing neuromarketing research and practice, yet future work must address scalability, cross-cultural validation, and ecological realism to fully harness its promise.