Abstrak Berita hoax menjadi masalah besar di era digital, terutama di Indonesia, di mana informasi yang tidak terverifikasi menyebar dengan cepat melalui media sosial. Penelitian ini membandingkan kinerja algoritma Naïve Bayes (NB) dan Support Vector Machine (SVM) dalam mendeteksi berita hoax berbahasa Indonesia. Dataset yang digunakan terdiri dari 4.599 berita, yang dikumpulkan dari Twitter dan repositori GitHub, dikategorikan sebagai hoax atau valid. Berbagai tahap preprocessing, seperti tokenisasi, stopword removal, stemming, dan TF-IDF vectorization, diterapkan untuk meningkatkan akurasi model. Model dievaluasi menggunakan metrik akurasi, presisi, recall, dan F1-score. Hasil eksperimen menunjukkan bahwa SVM memiliki performa lebih baik dibandingkan Naïve Bayes, dengan akurasi 70,87%, lebih tinggi dibandingkan 66,52% dari Naïve Bayes. SVM juga unggul dalam presisi (72%) dan F1-score (82%), sedangkan Naïve Bayes lebih unggul dalam recall (99%). Kesimpulan dari penelitian ini adalah bahwa SVM lebih efektif dalam klasifikasi berita hoax, sementara Naïve Bayes lebih cocok digunakan jika kecepatan pelatihan menjadi prioritas. Penelitian selanjutnya disarankan untuk menggunakan pendekatan deep learning seperti BERT atau LSTM, memperluas dataset, serta mengembangkan model hybrid yang menggabungkan Naïve Bayes dan SVM untuk mengoptimalkan akurasi dan efisiensi.
                        
                        
                        
                        
                            
                                Copyrights © 2025