Warung Tegal (Warteg) merupakan usaha kuliner yang populer di Indonesia, tetapi sistem perhitungan harga makanannya masih manual, yang dapat menyebabkan kesalahan transaksi. Penelitian ini bertujuan mengembangkan sistem deteksi makanan otomatis menggunakan YOLO v8 untuk mengotomatisasi perhitungan harga.Dataset terdiri dari berbagai lauk warteg yang diproses dengan teknik augmentasi seperti pemotongan, rotasi, dan pencahayaan guna meningkatkan kinerja model. Hasil penelitian menunjukkan bahwa dalam pengujian terbaik dengan dataset 70:30 (20 epochs, batch size 16, learning rate 0.001), model YOLO v8 mencapai precision 0.602, recall 0.176, F1-score 0.32, box_loss 1.756, dan mAP@0.5 0.229. Tantangan utama meliputi keterbatasan dataset, kompleksitas latar belakang, dan kurangnya perbandingan dengan dataset publik. Meskipun dalam beberapa kondisi akurasi mencapai 75%- 100%, diperlukan dataset lebih besar dan perbandingan model lain untuk meningkatkan akurasi. Sistem ini berpotensi mendukung digitalisasi industri kuliner dan meningkatkan efisiensi transaksi di warteg.
Copyrights © 2025