Oxidation desulfurization (ODS) is an effective method to remove sulfur compounds from fuels by converting them into more polar oxidized forms that are easier to extract. In this study, H₅PV₂Mo₁₀O₄₀/TiO₂ catalysts were synthesized and characterized using FT-IR spectroscopy. The FT-IR spectra confirmed the successful impregnation of polyoxometalate into the TiO₂ matrix, indicated by the appearance of Ti-O and O-Ti-O vibrations, while the typical H₅PV₂Mo₁₀O₄₀ peaks remained detectable. The performance of the H₅PV₂Mo₁₀O₄₀/TiO₂ catalyst in the desulfurization of 4-methyldibenzothiophene (4-MDBT) was studied based on variations in reaction time, catalyst mass, temperature, and amount of H₂O₂. The optimal conditions obtained were a reaction time of 2 hours, a catalyst mass of 0.05 g, a temperature of 60°C, and a volume of H₂O₂ of 5 mL, with a maximum sulfur conversion of 99.0%. These results indicate that H₅PV₂Mo₁₀O₄₀/TiO₂ has potential as an efficient ODS catalyst.
Copyrights © 2025