Kemajuan teknologi informasi telah merevolusi cara bisnis berinteraksi dengan pelanggan melalui aplikasi mobile, termasuk dalam sektor makanan dan minuman. Aplikasi Tomoro Coffee menghadapi tantangan dalam mempertahankan kepuasan pengguna akibat keterbatasan fitur dan masalah teknis. Penelitian ini bertujuan untuk menerapkan algoritma Naïve Bayes guna meningkatkan model klasifikasi sentimen ulasan pengguna, menganalisis distribusi sentimen positif dan negatif beserta faktor utama yang memengaruhinya, serta mengevaluasi performa model berdasarkan akurasi, presisi, recall, dan F1-score. Data ulasan dikumpulkan dari Google Play Store dan diolah menggunakan metode Knowledge Discovery in Database (KDD), yang mencakup pembersihan data, tokenisasi, penghapusan stopword, stemming, serta ekstraksi fitur menggunakan Term Frequency-Inverse Document Frequency (TF-IDF). Hasil penelitian menunjukkan bahwa algoritma Naïve Bayes mencapai akurasi sebesar 90%, dengan presisi 91,3%, recall 87,3%, dan F1-score 88,7%. Temuan ini memberikan wawasan strategis bagi pengembang aplikasi dalam meningkatkan layanan dan fitur berdasarkan analisis sentimen pengguna. Dari hasil analisis, 64,4% ulasan tergolong positif, didominasi oleh komentar seperti "kopinya enak", sementara 35,6% ulasan negatif umumnya berisi keluhan teknis, seperti "tidak tersedia".
                        
                        
                        
                        
                            
                                Copyrights © 2025