Blockchain technology has revolutionized data security and transaction transparency across various industries. However, the increasing complexity of blockchain networks has led to anomalies that require further investigation. This study aims to analyze anomalies in blockchain systems using machine learning approaches. Various anomaly detection techniques, including supervised and unsupervised methods, are evaluated for their effectiveness in identifying irregularities. The results indicate that machine learning models can detect anomalies with high accuracy, providing insights into potential threats and system vulnerabilities. The findings of this research contribute to improving blockchain security and developing more robust monitoring systems.
Copyrights © 2025