As a maritime country strategically located along the world's leading transportation routes, Indonesia often faces increased ship accidents. Based on the Basarnas Statistics Book, ship accidents handled by Basarnas from 2021 to 2023 increased by 3%. This condition requires an effective forecasting method to carry out SAR operations to predict ship accidents in the Indonesian region in the future and assess the readiness and needs of Basarnas resources. This study compares the forecasting results obtained using the Singular Spectrum Analysis (SSA) and the Local Linear methods. Both methods do not require parametric assumptions. The data used in this study are divided into training data and test data. This data is secondary data obtained from the Basarnas Statistics Book. The training data in this study is the number of SAR operations from January 2021 to December 2022, while the testing data is from January 2023 to December 2023. From the analysis results, it is known that the method with the smallest MAPE is the Local Linear method with a MAPE of test data of 18.67% (good forecasting category), optimal bandwidth (h) = 4.299, and CV (h) = 231.39 where bandwidth is used to determine the level of smoothness of the estimate, while the CV (h) value is used to select the optimal bandwidth that minimizes the estimation error. At the same time, the SSA method has a MAPE of 40.27% (fair forecasting category). This shows that the Local Linear method provides a more accurate forecast of the number of SAR operations related to ship accidents in Indonesia. This research contributes to the SDGs to make Basarnas an effective and accountable institution and improve the planning and decision-making process in SAR operations through accurate forecasting research is relevant to accurate forecasting.
Copyrights © 2025