Indonesian Journal of Statistics and Its Applications
Vol 4 No 3 (2020)

EVALUASI KINERJA METODE CLUSTER ENSEMBLE DAN LATENT CLASS CLUSTERING PADA PEUBAH CAMPURAN

Debora Chrisinta (Department of Statistics, IPB University, Indonesia)
I Made Sumertajaya (Department of Statistics, IPB University, Indonesia)
Indahwati Indahwati (Department of Statistics, IPB University, Indonesia)



Article Info

Publish Date
20 Dec 2020

Abstract

Most of the traditional clustering algorithms are designed to focus either on numeric data or on categorical data. The collected data in the real-world often contain both numeric and categorical attributes. It is difficult for applying traditional clustering algorithms directly to these kinds of data. So, the paper aims to show the best method based on the cluster ensemble and latent class clustering approach for mixed data. Cluster ensemble is a method to combine different clustering results from two sub-datasets: the categorical and numerical variables. Then, clustering algorithms are designed for numerical and categorical datasets that are employed to produce corresponding clusters. On the other side, latent class clustering is a model-based clustering used for any type of data. The numbers of clusters base on the estimation of the probability model used. The best clustering method recommends LCC, which provides higher accuracy and the smallest standard deviation ratio. However, both LCC and cluster ensemble methods produce evaluation values that are not much different as the application method used potential village data in Bengkulu Province for clustering.

Copyrights © 2020






Journal Info

Abbrev

ijsa

Publisher

Subject

Computer Science & IT Mathematics Other

Description

Indonesian Journal of Statistics and Its Applications (eISSN:2599-0802) (formerly named Forum Statistika dan Komputasi), established since 2017, publishes scientific papers in the area of statistical science and the applications. The published papers should be research papers with, but not limited ...