IJOT
Vol. 3 No. 5 (2021): IJOT

Adaptive neuro - fuzzy model for assessing the reliability of component software systems

Toxirjonovich, O’rinov Nodirbek (Unknown)
o'g'li, Nabiyev Sherzodbek Nurmuhammad (Unknown)



Article Info

Publish Date
07 May 2021

Abstract

Although many algorithms and methods have been developed for assessing the reliability of component software systems (CBSS), much more research is needed. An accurate assessment of the reliability of CBSS is difficult because it depends on two factors: the reliability of the components and the reliability of the glue code. Moreover, reliability is a real-world phenomenon associated with many real-time problems. Soft computing techniques can help solve problems for which solutions are uncertain or unpredictable. A number of soft computing approaches have been proposed to assess the reliability of CBSS. These methods learn from the past and capture existing patterns in the data. The two main elements of soft computing are neural networks and fuzzy logic. In this article, we propose a model for assessing the reliability of CBSS, known as Adaptive Neural Fuzzy Inference System (ANFIS), which builds on these two basic elements of soft computing, and compare its performance to that of a simple FIS (Fuzzy Inference System) for different datasets

Copyrights © 2021






Journal Info

Abbrev

IJOT

Publisher

Subject

Automotive Engineering Computer Science & IT Control & Systems Engineering Engineering Industrial & Manufacturing Engineering Materials Science & Nanotechnology

Description

International Journal on Orange Technologies (IJOT) is an online international peer-reviewed journal that publishes high-quality original scientific papers, short communications, correspondence, and case studies in areas of research, development, and applications of orange technology and ...