Penelitian dengan judul “ Perbandingan Kinerja Naive Bayes dan Support Vector Machine untuk Prediksi Herregistrasi “ bertujuan untuk mengetahui perbandingan kinerja naive bayes dan support vector machine dalam melakukan prediksi herregistrasi dengan parameter akurasi dan AUC menggunakan skenario pengujian dengan split validation yang nantinya akan dapat dijadikan acuan bagi pihak universitas untuk melakukan kebijakan bagi para mahasiswa khususnya yang berpotensi mengalami tidak melakukan herregistrasi. Pada penelitian ini hanya melakukan prediksi herregistrasi calon mahasiswa baru pada fakultas ilmu komputer untuk angkatan tahun 2015 sampai dengan tahun 2017 dengan menggunakan metode algoritma naive bayes dan support vector machine. Akurasi yang dihasilkan pada metode naive bayes yaitu 93,54% dan AUC 0,946 sedangkan pada metode support vector machine yaitu 92,67% dan AUC 0,877 menggunakan kernel RBF dengan parameter cost (C) 1,0 dan Epsilon 0,0. Selain itu performa akurasi dan AUC sangat berpengaruh apabila dilakukan penghapusan terhadap salah satu variabel yang digunakan.
Copyrights © 2020