Signal and Image Processing Letters
Vol 1, No 2 (2019)

Kalman Filter for Noise Reducer on Sensor Readings

Ma'arif, Alfian (Unknown)
Iswanto, Iswanto (Unknown)
Nuryono, Aninditya Anggari (Unknown)
Alfian, Rio Ikhsan (Unknown)



Article Info

Publish Date
19 Jul 2019

Abstract

Most systems nowadays require high-sensitivity sensors to increase its system performances. However, high-sensitivity sensors, i.e. accelerometer and gyro, are very vulnerable to noise when reading data from environment. Noise on data-readings can be fatal since the real measured-data contribute to the performance of a controller, or the augmented system in general. The paper will discuss about designing the required equation and the parameter of modified Standard Kalman Filter for filtering or reducing the noise, disturbance and extremely varying of sensor data. The Kalman Filter equation will be theoretically analyzed and designed based on its component of equation. Also, some values of measurement and variance constants will be simulated in MATLAB and then the filtered result will be analyzed to obtain the best suitable parameter value. Then, the design will be implemented in real-time on Arduino to reduce the noise of IMU (Inertial Measurements Unit) sensor reading. Based on the simulation and real-time implementation result, the proposed Kalman filter equation is able to filter signal with noises especially if there is any extreme variation of data without any information available of noise frequency that may happen to sensor- reading. The recommended ratio of constants in Kalman Filter is 100 with measurement constant should be greater than process variance constant.

Copyrights © 2019






Journal Info

Abbrev

simple

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering Engineering Industrial & Manufacturing Engineering

Description

The journal invites original, significant, and rigorous inquiry into all subjects within or across disciplines related to signal processing and image processing. It encourages debate and cross-disciplinary exchange across a broad range of ...