Journal of Innovation Research and Knowledge
Vol. 4 No. 5: Oktober 2024

ANALISIS PREDIKTIF MENGGUNAKAN MACHINE LEARNING UNTUK MENANGGULANGI MASALAH REJECT PRODUK PADA PROSES PRODUKSI PT. XYZ

Adevian Fairuz Pratama (Unknown)
Dhebys Suryani (Unknown)
Firgi Sotya Izzudin (Unknown)
Adzikirani, Adzikirani (Unknown)



Article Info

Publish Date
11 Oct 2024

Abstract

PT. XYZ adalah perusahaan makanan dan minuman di Indonesia, terkenal dengan minuman isotoniknya yang menggantikan cairan tubuh saat aktivitas fisik. Produk ini populer di kalangan konsumen lokal dan internasional karena formulanya yang inovatif. PT. XYZ sangat menekankan kualitas, sehingga produk yang tidak memenuhi standar ketat, seperti tekanan botol, akan di-reject untuk memastikan keamanan dan kualitas. Penelitian ini menggunakan metode machine learning, khususnya XGBoost, untuk analisis prediktif. Data diambil dari mesin Liquid Nitrogen dan Bottle Pressure Detector, mencakup pressure bottle, temperatur tangki, sensor liquid nitrogen, dan lainnya pada tahun 2023. Data diolah dan dianalisis untuk memastikan kesesuaian dengan kebutuhan PT. XYZ dan kecocokan dengan metode XGBoost. Business Understanding mengidentifikasi tujuan bisnis dan dampak deteksi tekanan botol. Data Understanding dilakukan dengan Exploratory Data Analysis (EDA). Data dibagi menjadi 80% untuk training dan 20% untuk testing. Data Preparation melibatkan preprocessing untuk membersihkan duplikasi dan missing value. Modeling menggunakan algoritma XGBoost dengan parameter learning_rate sebesar 0.5, gamma sebesar 2, max_depth sebesar 6, n_estimators sebesar 100, colsample_bytree sebesar 0.4, subsample sebesar 0.7, reg_lambda sebesar 3, dan min_child_weight sebesar 1 terbukti terbaik. Evaluasi menunjukkan nilai MAPE 6.88% dan akurasi 93.12%. Prediksi menunjukkan jumlah reject sekitar 23 pada 1 Januari 2024 pukul 07:00, dan sekitar 22 pukul 08:00. Rekomendasi untuk penelitian selanjutnya adalah menggunakan lebih banyak data dan menggabungkan XGBoost dengan model machine learning lainnya

Copyrights © 2024






Journal Info

Abbrev

JIRK

Publisher

Subject

Humanities Economics, Econometrics & Finance Education Health Professions Law, Crime, Criminology & Criminal Justice Social Sciences

Description

Journal of Innovation Research and Knowledge, published by Bajang Institute. Published in two formats, print and online, print version of ISSN: 2798-3471 and the online version of ISSN: 798-3641, both of which are published every month. The scope of the journal studies broadly includes: Culture (a ...