Twitter is a unique conversation tool that allows us to send and receive short messages called tweets in the Twitter community. Tweets are short messages that have a length of 140 characters. Tweets that appear on the homepage are all jumbled into one, posted variety ranging from the economy, sports, technology, automotive, healthcare and others. When users search for a news or information desired, the problem that arises is Twitter user difficult to find tweets. The classification process can be performed to categorize a tweets using an algorithm Fuzzy K-Nearest Neighbour. However, the process of classifying a tweets it is difficult to do because the tweets in the form of short-text. Therefore, before doing the classification process a tweets done preprocessing and word expansion beforehand with Query Expansion algorithms in order to provide maximum results in the classification. In the study conducted to produce the best accuracy by 82%. Best accuracy is obtained when using the Fuzzy KNN method with Query Expansion without preprocessing and threshold for the support value> = 0.15 and the value of confidence> = 1.
Copyrights © 2017