Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer
Vol 1 No 12 (2017): Desember 2017

Analisis Sentimen Tingkat Kepuasan Pengguna Penyedia Layanan Telekomunikasi Seluler Indonesia Pada Twitter Dengan Metode Support Vector Machine dan Lexicon Based Features

Umi Rofiqoh (Fakultas Ilmu Komputer, Universitas Brawijaya)
Rizal Setya Perdana (Fakultas Ilmu Komputer, Universitas Brawijaya)
Mochammad Ali Fauzi (Fakultas Ilmu Komputer, Universitas Brawijaya)



Article Info

Publish Date
03 Aug 2017

Abstract

Sentiment analysis is a part of research from Text Mining which is usefull to classify text documents contained opinion based on sentiment. Text document that is used in research comes from Twitter from people's opinion about cellular telecommunication service provider. The used method is Support Vector Machine with using Lexicon Based Features as its feature renewal instead of using TF-IDF features. The used data in this research is 300 data which divided into two types of data with ratio 70% for training data and 30% for testing data. The result of system accuracy that is obtained from sentiment analysis using Support Vector Machine and Lexicon Based Features method is 79% using degree value 2, constant learning rate value 0.0001, and maximum iteration is 50 times. While sentiment analysis system without using Lexicon Based Features is resulting accuracy at 84% with the same parameter values.

Copyrights © 2017






Journal Info

Abbrev

j-ptiik

Publisher

Subject

Computer Science & IT Control & Systems Engineering Education Electrical & Electronics Engineering Engineering

Description

Jurnal Pengembangan Teknlogi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya merupakan jurnal keilmuan dibidang komputer yang memuat tulisan ilmiah hasil dari penelitian mahasiswa-mahasiswa Fakultas Ilmu Komputer Universitas Brawijaya. Jurnal ini diharapkan dapat mengembangkan penelitian ...