JITK (Jurnal Ilmu Pengetahuan dan Komputer)
Vol. 10 No. 4 (2025): JITK Issue May 2025

SENTIMENT ANALYSIS OF GOVERNMENT ON TIKTOK AND X PLATFORMS WITH SVM AND SMOTE APPROACH

Dimar Pateman (Universitas Majalengka)
Tri Ferga Prasetyo (Universitas Majalengka)
Harun Sujadi (Universitas Majalengka)



Article Info

Publish Date
16 Jun 2025

Abstract

This study aims to analyze public sentiment toward the government on TikTok and X (formerly Twitter) using the Support Vector Machine (SVM) algorithm optimized with the Synthetic Minority Over-sampling Technique (SMOTE). Data were collected through keyword-based scraping of posts containing the word “pemerintah” (government) and processed using standard NLP pre-processing techniques. Results show that SVM combined with SMOTE significantly improves classification accuracy from 61% to 76% on TikTok, and from 74% to 86% on X. Word cloud analysis confirms these findings: TikTok content tends to reflect neutral and positive sentiments, while X contains predominantly negative expressions. These differences highlight platform-specific public discourse characteristics. The findings suggest that public communication strategies should be tailored accordingly: TikTok for positive narrative and outreach, X for monitoring feedback and criticism. This approach demonstrates the effectiveness of machine learning-based sentiment analysis in supporting data-driven public policy communication.

Copyrights © 2025






Journal Info

Abbrev

jitk

Publisher

Subject

Computer Science & IT

Description

Kegiatan menonton film merupakan salah satu cara sederhana untuk menghibur diri dari rasa gundah gulana ataupun melepas rasa lelah setelah melakukan aktivitas sehari-hari. Akan tetapi, karena berbagai alasan terkadang seseorang tidak ada waktu untuk menonton film di bioskop. Dengan bantuan media ...