JuTISI (Jurnal Teknik Informatika dan Sistem Informasi)
Vol 11 No 1 (2025): JuTISI

Integrasi Convolutional Autoencoder dengan Support Vector Machine untuk Klasifikasi Varietas Almond

Fadlullah, Rizal (Unknown)
Winarno, Sri (Unknown)
Naufal, Muhammad (Unknown)



Article Info

Publish Date
17 Apr 2025

Abstract

This research aims to optimize almond variety classification by integrating Convolutional Autoencoder (CAE) as a feature extraction method and Support Vector Machine (SVM) for classification. The research process includes data collection from available datasets, preprocessing, and splitting data for training and testing. Features from almond images are extracted using CAE, which are then used in the SVM model for classification. Model evaluation shows a classification accuracy of 97% on the test data, a significant increase compared to the 48% accuracy of conventional SVM. The CAE-SVM approach offers more compact and informative feature representations, effectively improving almond variety recognition. This study highlights the potential of combining CAE and SVM advantages to enhance plant image analysis and encourages further advancements in machine learning applications in agriculture.

Copyrights © 2025






Journal Info

Abbrev

jutisi

Publisher

Subject

Computer Science & IT

Description

Paper topics that can be included in JuTISI are as follows, but are not limited to: • Artificial Intelligence • Business Intelligence • Cloud & Grid Computing • Computer Networking & Security • Data Analytics • Datawarehouse & Datamining • Decision Support System • E-Systems (E-Gov, ...