JURIKOM (Jurnal Riset Komputer)
Vol 12, No 2 (2025): April 2025

Sistem Klasifikasi Tingkat Kerusakan Kunci Motor Menggunakan Random Forest dengan Hyperparameter Tuning

Jalu Wira Yuda (Universitas Nahdlatul Ulama Sunan Giri, Bojonegoro)
Hastie Audytra (Universitas Nahdlatul Ulama Sunan Giri, Bojonegoro)
Nur Mahmudah (Universitas Nahdlatul Ulama Sunan Giri, Bojonegoro)



Article Info

Publish Date
30 Apr 2025

Abstract

Motorcycle key damage is often a problem for users, while the identification process still relies on technicians, which can be time-consuming and subjective. This study develops a classification system for motorcycle key damage levels using the Random Forest method with hyperparameter optimization. The dataset consists of 1,000 samples collected through observation and technician interviews, with data preprocessing using the SMOTE technique to address class imbalance. The model is trained and optimized with Random Forest using GridSearchCV and evaluated based on accuracy, precision, recall, and F1-score. The results show that the optimized Random Forest model achieves an accuracy of 85.5%, an improvement from 82% before tuning, enabling faster and more accurate identification of motorcycle key damage levels. The implementation of this system is expected to improve repair service efficiency and help users take action before the damage worsens.

Copyrights © 2025






Journal Info

Abbrev

jurikom

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering

Description

JURIKOM (Jurnal Riset Komputer) membahas ilmu dibidang Informatika, Sistem Informasi, Manajemen Informatika, DSS, AI, ES, Jaringan, sebagai wadah dalam menuangkan hasil penelitian baik secara konseptual maupun teknis yang berkaitan dengan Teknologi Informatika dan Komputer. Topik utama yang ...